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Abstract 
 
The exact solutions for the spatially coupled deflection and the normal stress at an arbitrary location of a cross-

section of the thin-walled Timoshenko curved beam with symmetric and non-symmetric cross-sections with and with-
out two types of elastic foundations are newly presented using series solutions for the displacement parameters. The 
equilibrium equations and the force-deformation relations are derived from the elastic strain energy including the ef-
fects of shear deformation and the axial-flexural-torsional coupling, and the strain energy considering the foundation 
effects. The explicit expressions for displacement parameters are derived by applying the power series expansions of 
displacement components to the simultaneous ordinary differential equations. Next, the element stiffness matrix is 
determined by using the force-deformation relationships. The normal stress at any arbitrary location of the cross-section 
for a curved beam is evaluated from the stiffness matrix. To verify the validity and the accuracy of this study, the dis-
placements and the normal stresses of curved beams are presented and compared with the analytical solutions, the finite 
element results using the isoparametric curved beam elements based on the Lagrangian interpolation polynomial, and 
the detailed three-dimensional analysis results using the shell elements of SAP2000.  

 
Keywords: Thin-walled; Curved beam; Stiffness matrix; Shear deformation; Elastic foundation 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

Thin-walled curved beam structures have been 
used in many civil, mechanical, and aerospace engi-
neering applications such as curved wire, curved 
girder bridges, turbomachinery blades, tire dynamics, 
and stiffeners in aircraft structures, and the behavior 
of thin-walled members with open and closed cross- 
sections has been investigated extensively since the 
early works of Vlasov [1]. Also, monographs by Dab-
rowski [2] and Heins [3] are useful references for the 
thin-walled curved beam theory and its application. 
For the static and dynamic analyses of curved struc-
tures, the curved beam elements [4-26] based on the 

curvilinear strain description have generated a great 
deal of interest among researchers in recent years. 
Modeling of curved structures by means of lower-
order isoparametric beam elements leads to exces-
sively stiff behavior (called shear locking) in the thin 
regimes. Classical curved beam elements, when used 
for modeling thin and deep arches also exhibited ex-
cessive bending stiffness (called membrane locking) 
in approximating inextensional bending response. Up 
to the present, considerable research has been per-
formed to overcome these shear and membrane lock-
ing phenomena. Reduced integration [4, 5] of shear 
and membrane energies is widely used for eliminating 
one or more higher-order components in the strain 
distribution which leads to spurious kinematic modes 
in their respective thin limits. However indiscriminate 
use of reduced integration can introduce zero energy 
modes. Prathap and Babu [6], Babu and Prathap [7] 
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proposed a field-consistency approach, which identi-
fies the spurious constraint of the inconsistent strain 
field and drops them in advance. Unlike the reduced 
integration method, the field consistency approach 
ensures a variationally correct and orthogonally con-
sistent strain field. But both these methods reduce the 
order of strain interpolation and suffer from lower 
convergence rate. Also, curved beam elements based 
on displacement fields derived from assumed inde-
pendent strain fields exhibited no locking behavior [8-
10]. Applying the assumed polynomials for the strain 
fields, the strain-displacement relations are solved to 
get general solutions for the displacement fields. Kim 
and Park [11] and Lee and Kim [12] proposed two-
noded hybrid-mixed isotropic and unisotropic curved 
beam elements, respectively, with internal nodeless 
degrees and consistent stress parameters based on the 
Hellinger-Reissner variational principle without lock-
ing phenomena and stress oscillations. Wang and 
Chen [13] presented a locking-free meshless curved 
beam formulation based on the stabilized conforming 
nodal integration. Recently, Kim and Kim [14] pre-
sented a centroid-shear center formulation, which 
overcomes the drawback of previous curved beam 
theory based on the centroid formulation, for the spa-
tially coupled deflection and free vibration analyses 
of thin-walled curved beams with non-symmetric 
cross-sections. Kim et al. [15] derived an elastic strain 
energy considering the shear deformation effects and 
then they [16] developed an isoparametric curved 
beam element using the reduced integration for the 
coupled buckling analysis. However, the result ob-
tained from this finite curved beam element based on 
the classical Lagrangian interpolation polynomials is 
approximate and not exact. Therefore, as shown in the 
following numerical examples, a large numbers of 
curved beam elements are needed to obtain accurate 
results. Particularly, in evaluation of the normal stress 
of cross-section of curved beam by using the finite 
beam element, its error becomes larger because it is 
difficult to construct the displacement functions that 
satisfy the normal strain of cross-section which in-
volves derivatives of displacements.  

On the other hand, a few researchers have been in-
terested in the development of curved beam element 
using the displacement fields which satisfy homoge-
neous forms of equilibrium equations. Kim et al. [17] 
derived the stiffness and the mass matrices, respec-
tively, from the strain energy and the kinetic energy 
by using the natural shape functions of the exact in-

plane displacements which are obtained from an inte-
gration of the differential equations of a thin circular 
beam element in static equilibrium. This element gave 
exact results for static problems in the case of concen-
trated loads because the shape functions of the ele-
ment are exact in statics. Zhang and Di [18] presented 
new accurate two-noded finite elements which are 
free from shear and membrane locking and are de-
rived from the potential energy principle and the Hel-
linger-Reissner functional principle, respectively. 
Raveendranath et al. [19] developed two-noded lock-
ing free curved beam elements, for which a cubic 
polynomial field was assumed a priori and the poly-
nomial interpolations for the axial displacement and 
the twisting angle were derived employing force-
moment and moment-shear equilibrium equations. 
Friedman and Kosmatka [20] and Litewka and Ra-
kowski [21] developed the locking-free two-noded 
(three DOF per node) curved beam element based on 
exact displacement functions in algebraic-
trigonometric form, which satisfy the element equilib-
rium equations. Also Litewka and Rakowski [22] 
derived the approximate polynomial equivalents of 
the functions presented in Ref. [21] by expanding the 
trigonometric functions into the power series. How-
ever, most of these studies are restricted to two di-
mensional problems and based on explicit analytical 
solutions of homogeneous equations. 

The complicated problems for the analysis of 
curved beam on elastic foundation are frequently 
encountered due to additional parameters related to 
the foundation effects. There exists a wide body of 
literature [27-32] on the analysis of beams resting on 
elastic foundation since the early works of Hetenyi 
[27] who developed the differential equation ap-
proach. The static and dynamic cases have been stud-
ied extensively, and the subjects are covered in great 
depth by Volterra [28, 29]. Chakraborty and Sarkar 
[30] presented a stochastic finite element method for 
analysis of a curved beam on uncertain elastic foun-
dation. In their study, the finite element solution has 
been obtained by using the Neumann expansion 
method within the framework of Monte Carlo simula-
tion. Aköz and Kadioğlu [31] developed a mixed 
finite element formulation for circular beams on the 
Winkler foundation. Lee et al. [32] derived the gov-
erning differential equations for the out-of-plane free 
vibration of circular curved beams resting on 
Winkler-type foundations and solved numerically by 
using the Runge-Kutta method. 
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Even though a significant amount of research has 
been conducted on development of improved curved 
beam element, to the authors’ knowledge, there has 
been no study on the evaluation of the exact solutions 
for the spatially coupled deflection analysis of shear 
deformable thin-walled curved beams with non-
symmetric cross-section in the literature. Moreover, it 
has not been reported on the exact evaluation of the 
normal stress at an arbitrary location of non-
symmetric cross-section of curved beam. It is well 
known that the elastic behavior of thin-walled curved 
beam with non-symmetric cross-section considering 
the shear deformation effects is very complex due to 
the coupling effect of extensional, bending, and tor-
sional deformations, as can be seen in seven simulta-
neous second-order ordinary differential equations. 
Accordingly, many have researchers thought that it is 
very difficult to evaluate the exact solutions for the 
spatially coupled deflection and the normal stress of 
thin-walled curved beam with non-symmetric cross-
section due to an aforementioned reason.  

The purpose of this study is to present, for the first 
time, the exact solutions for the coupled deflection 
and the normal stress at an arbitrary location of cross-
section of shear deformable thin-walled curved beam 
with and without two-types of elastic foundation. The 
important points are summarized as follows:  

1)  The equilibrium equations and the force-
deformation relations of the curved beam on 
two-types of elastic foundations considering the 
shear deformation effects are newly derived. 

2)  The element stiffness matrix of curved beam on 
elastic foundation is evaluated based on the 
power series expansions of displacement com-
ponents.  

3)  The evaluation procedure for the normal stress 
at any arbitrary location of non-symmetric 
cross-section of a curved beam subjected to an 
external force is newly presented.  

4)  To demonstrate the accuracy and the validity of 
this study, numerical solutions are presented 
and compared with analytical solutions and fi-
nite element solutions developed by Kim et al. 
[16] using the isoparametric curved beam ele-
ments and shell elements of SAP2000 [33]. 

 

2. Equilibrium equations and force-deformation 
relations 

In this section, the equilibrium equations and the  

  
(a) Displacement parameters 

 

    
(b) Stress resultants 

 
Fig. 1. Notation for displacement parameters and stress resul-
tants. 

 
force-deformation relations of a curved beam consid-
ering the shear deformation effects and the non-
symmetric thin-walled cross-sections are derived 
from the energy principle.  

Figs. 1(a) and 1(b) show the displacement parame-
ters and the stress resultants of thin-walled curved 
beams, respectively. In Fig. 1(a), 2

px  and 3
px  mean 

principal axes defined at the centroid and θ  is the 
angle between 2

px  and 2x  axes in the counter-
clockwise direction. , ,x y zU U U , and 1 2 3, ,ω ω ω  
are the rigid body translations and the rotations of the 
cross-section with respect to 1 2,x x , and 3x  axes, 
respectively; f  is the displacement parameter 
measuring warping deformations. Also 1F , 2F , and 

3F  are the axial and shear forces acting at the cen-
troid; 1M  is the total twist moment with respect to 
the centroidal axis; 2M  and 3M  are the bending 
moments with respect to 2x  and 3x  axes, respec-
tively, and Mφ  is the bimoment. The elastic strain 
energy of the thin-walled curved beam considering 
the effects of shear deformation due to the bending 
and the restrained warping, the non-symmetric cross-
section, and the thickness-curvature is given by Ref. 
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In Eq. (1), the prime denotes differentiation with re-
spect to the position 1x , and E  and G  are the 
Young’s and shear moduli, respectively; A  and J  
are the area and the torsional constant, respectively; 

2 3 23, ,I I I , and Iφ  are the second moment of inertia 
about 2x  and 3x  axes, the product moment of iner-
tia, and the warping moment of inertia, respectively; 

2 2 2( )I I eφ =  and 3 3 3( )I I eφ = −  are the product mo-
ments of inertia due to the normalized warping; 

( , , , 2, 3)ijkI i j k φ=  are the third moments of inertia 
considering the thickness-curvature effect, which 
causes difference for displacements, twist angle, and 
the normal stress in the curved beam with large sub-
tended angle and small radius. The detailed defini-
tions of these sectional properties are presented in Ref. 
[15].  

In this study, we consider the cross-section of thin-
walled curved beam resting on an elastic foundation, 
as shown in Fig. 2, throughout its length, in which a 
more realistic and generalized representation of the 
elastic foundation can be accomplished by the way of 
a two-types of foundation model. In Fig. 2, yk  and  

 
 
Fig. 2. Cross-section of beam on two-types of elastic founda-
tion. 
 

zk  are the Winkler foundation moduli indicating the 
first type of foundation parameters for the transverse 
translations at the point ( , )y zh h , kω  is the rotational 
parameter for rotation of the cross-section, and yg  
and zg  denote the second type of foundation pa-
rameters (i.e., Vlasov, Pasternak and Filonenko-
Borodich foundation modulus) at the point ( , )y zh h . 
The strain energy considering the foundation effects 
is given in Ref. [34]. 
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By taking the variation of Eqs. (1) and (3) with re-
spect to seven displacement parameters, xU , yU , 

zU , 1ω , 2ω , 3ω , and f , the coupled equilibrium 
equations and the force-deformation relations for the 
curved beam are derived and the equations are pre-
sented in the appendix. 
 

3. Element stiffness matrix of curved beam 
3.1 Exact evaluation of displacement function 

The exact displacement function of the thin-walled 
curved beam with non-symmetric cross-section for 
the spatially coupled deflection analysis is evaluated. 
For this, we consider the displacement state vector 
consisting of 14 displacement parameters as follows: 

 

1 1 2

2 3 3

, , , , , , , ,

, , , ,

x x y y z z

T

U U U U U U

f f

ω ω ω

ω ω ω

′ ′ ′ ′=

′ ′ ′

d
  (4) 

 
The solutions of seven displacement parameters are 
taken as the following infinite power series. 
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By substituting Eqs. (5a-g) into the equilibrium equa-
tions of curved beam and shifting the index of power 
of nx , we can get the following equation. 
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where the matrices nA  and nB  are 7×7 and 7×14 
matrices, respectively, composed of coefficients. Eq. 
(6) can be rewritten as 
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where 
 

1−=n n nZ A B              (8) 
 

The terms , , ,n n na b gL  converge to zero as 
n →∞ . Then we put the initial integration constant 
vector a  as follows: 

 
{ }0 1 0 1 0 1 0 1 0 1 0 1 0 1, , , , , , , , , , , , , Ta a b b c c d d e e f f g g=a   (9) 

 
By substituting the integration constants obtained by 
Eq. (7) into Eq. (5) and rearranging Eq. (4), the dis-
placement state vector composed of 14 displacement 
parameters in Eq. (4) is expressed with respect to the 
initial integration constant vector a  as follows: 
 

= nd X a               (10)                    
 
In each of 14 solution sets, the calculation of the 

coefficients by the recursive relation in Eq. (7) is con-
tinued until the contribution of the next coefficient is 
less than an arbitrary small number and these sym-
bolic calculations are performed with the help of the 

technical computer software Mathematica [35].  
The initial integration constant vector a  can be 

expressed with respect to 14 nodal displacement 
components. The nodal displacement vector at p  
and q , which means the two ends of the member 

1( 0, )x l= , is defined by 
 

,
Tp q=eU U U             (11) 

 
where 
 

1 2 3(0), (0) , (0), (0), (0), (0), (0)
Tp

x y zU U U fω ω ω=U
 

1 2 3( ), ( ), ( ), ( ), ( ), ( ), ( )
Tq

x y zU l U l U l l l l f lω ω ω=U   

 (12) 
 

Substituting coordinates of the ends of member 
1( 0, )x l=  into Eq. (10) and accounting for Eq. (11), 

the nodal displacement vector eU  can be obtained 
as follows: 
 

=eU H a               (13) 
 
Elimination of a  from Eq. (10) using Eq. (13) yields 
the displacement state vector consisting of 14 dis-
placement components. 

 
1−= n ed X H U             (14) 

 
It should be noted that 1−

nX H  in Eq. (14) denotes 
the 14×14 exact interpolation matrix since the dis-
placement state vector satisfies the homogenous form 
of the seven coupled equilibrium equations. 

 
3.2 Calculation of stiffness matrix 

We consider the force-deformation relations of 
curved beam which can be expressed in a matrix form 
as follows: 

 
=f S d                (15) 

 
Substitution of the displacement function in Eq. (14) 
into Eq. (15) leads to 
 

1−= n ef S X H U          (16) 
 

The nodal forces at two ends of the element are 
evaluated as 
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1(0) (0)p −=− = − n eF f S X H U      
1( ) ( )q l l −= = n eF f S X H U       (17) 

 
Consequently, the element stiffness matrix of a thin-
walled Timoshenko curve beam considering the non- 
symmetric cross-section and the foundation effect is 
evaluated as 
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It is noticeable that the stiffness matrix in Eq. (19) is 
formed by the shape functions which are exact solu-
tions of the equilibrium equations. Therefore, the 
accurate curved beam element based on the stiffness 
matrix developed by this study eliminates discretiza-
tion errors and is free from the shear and membrane 
locking. 
 

4. Exact evaluation of normal stress at an ar-
bitrary location of cross-section 

As explained previously, for evaluation of the nor-
mal stress at an arbitrary span and location of the 
cross-section of curved beam, the presence of cou-
pling in the differential equations makes a closed 
form solution very difficult to obtain. Even in using 
the finite curved beam element based on the ap-
proximate interpolation polynomials, it is difficult to 
construct the displacement functions that satisfy the 
normal strain of cross-section which involves deriva-
tives of displacements. 

Referring to the study of Kim et al. [15], the nor-
mal strain-displacement relation at an arbitrary point 
of cross-section of curved beam is given as: 
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To evaluate values of the displacements and the 

stress at an arbitrary point of cross-section of beam, 

we consider the member force 1( )xF  at two ends of 
beam having the span length 1x  from Eq. (18) as 
follows: 

 
*

1 1( ) ( ) ( )x x l=F K d          (21) 
 

where *( )ld  denotes the displacements at two ends 
of beam which has the span length l  and 
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The displacement at span 1x  of beam is evaluated as 
follows: 
 

* 1
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where 
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In Eq. (24), *H  is evaluated by substituting coordi-
nates of the ends of member with its span length 1x  
into Eq. (10). Therefore the displacement state vector 

1( )xd  in Eq. (4) which is composed of 14 displace-
ment parameters at span 1x  can be expressed from 
Eq. (14). 
 

* 1 *
1 1 1( ) ( ) ( )x x x−= nd X H d         (25) 

 
Finally, by substituting the displacement parame-

ters obtained from Eq. (25) into Eq. (20) and applying 
Hooke’s law, the exact normal stress at point 2 3( , )x x  
of cross-section at an arbitrary span 1x  for the Ti-
moshenko curved beam subjected to the external 
forces can be evaluated. 
 

5. Isoparametric curved beam element 

For comparison, the finite curved beam element 
based on the isoparametric beam formulation having 
the thin-walled cross-section and the shear deforma-
tions which has been developed by Kim et al. [16] is 
used. In this study, the 2-noded isoparametric curved 
beam element with 7 DOF per node is introduced to 
interpolate displacement parameters that are defined 
at the centroid. The coordinate and all displacement 
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parameters of the beam element can be interpolated 
with respect to the nodal coordinates and displace-
ments, respectively. 
The element displacement vector feU  and force 
vector feF  for the isoparametric curved beam ele-
ment are defined as 

 
1 2,fe U U=U                         

1 2 3, , , , , ,
T

x y zU U U fη η η η η η η ηω ω ω=U ,η = 1, 2    
1 2,fe F F=F                         

1 2 3 1 2 3, , , , , ,
T

F F F M M M Mη η η η η η η η
φ=F    (26) 

 
where ηU  and ηF  are the nodal point displace-
ment and force vectors, respectively. 

Substituting the shape functions and cross-sectional 
properties into Eqs. (1) and (3) and integrating along 
the element length, the potential energy of the thin-
walled finite curved beam element is obtained in a 
matrix form as 

 
1
2T fe fe fe fe fe∏ = −T TU K U U F       (27) 

 
where feK  is the element elastic stiffness in local 
coordinate. The elastic stiffness matrix is evaluated 
by using a reduced Gauss numerical integration 
scheme, and the assembly of the element stiffness 
matrix for the entire structure based on the coordinate 
transformation leads to the equilibrium matrix equa-
tion in a global coordinate system. 
 

6. Numerical examples 

To illustrate the accuracy and the practical useful-
ness of this study, numerical solutions for the spa-
tially coupled deflection analysis of the thin-walled 
Timoshenko curved beam with symmetric and non-
symmetric cross-sections are presented and compared 
with the analytical solutions, and the finite element 
results using the isoparametric curved beam elements 
and the shell elements of SAP2000. 

 
6.1 Curved beam with symmetric cross-section 

Fig. 3. shows the cantilevered I-beam subjected to a 
vertical force 100 N at the free end and its material 
and sectional properties. The length of the curved 
beam is 100 cm. 

Table 1. Horizontal, vertical displacements and rotational 
angle at free end of the curved I-beam subjected to a vertical 
tip force (cm, rad.×10-2). 
 

 xU  zU  2ω  
Taucher [36] -1.5331 2.4253 -4.7587 

1800 shell elements -1.543 2.421 -4.994 
2 -1.3227 1.9839 -4.4069 
4 -1.4793 2.2976 -4.6648 
10 -1.5288 2.3971 -4.7434 
30 -1.5374 2.4145 -4.7570 

Isoparamet-
ric 

curved 
beam [16]

50 -1.5381 2.4159 -4.7581 
This study -1.5385 2.4167 -4.7587 

 

      
 

(a) Geometry of a           (b) Doubly symmetric  
curved beam                cross-section 

 
A = 8 cm2, E = 73000 N/cm2, G = 28000 N/cm2,   

J = 0.66667 cm4, 2I = 116.66667 cm4,            
3I = 2.25 cm4, Iφ = 56.25 cm6, 23Iφ = -56.25 cm6,   

2A = 2.5 cm2, 3A = 4.77932 cm2, rA = 62.5 cm4,      
l = 100 cm, yk = 10 N/cm2, zk = 10 N/cm2,      

kω =10 N, yg =10 N, zg = 10 N 
 

(c) Material and sectional properties 
 
Fig. 3. Cantilevered curved beam with a doubly symmetric 
cross-section. 

 
First, for the curved beam without elastic founda-

tion, the horizontal and vertical displacements, and 
rotational angle at the centroid of free end of beam 
obtained from the stiffness matrix method developed 
by this study are evaluated and presented in Table 1. 
For comparison, the results by finite element solu-
tions using the various numbers of isoparametric 
curved beam elements and the SAP2000 analysis are 
also presented in Table 1. The SAP2000 results are 
obtained by using a total of 1800 4-noded shell ele-
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ments. Also given in Table 1 is the analytical solution 
obtained from Castigliano’s energy theorem [36] 
considering shear deformation effect. The responses 
at the free end of a cantilevered curved beam using 
the energy theorem subjected to a vertical force are 
given as 

 
3

2 32 2 2x

PR PR PRU
EI EA GA

= − + −            

3

2 34 4 4z

PR PR PRU
EI EA GA

π π π= + +            

2

2
2

PR
EI

ω = −                        (28) 

 
It can be found from Table 1 that the results by this 

study using only a single element are found to be in 
excellent agreement with the finite element results 
using 50 curved beam elements and analytical solu-
tions. And the present results are in good agreement 
with those of SAP2000 analysis. It should be noted 
that the displacements and rotational angle obtained 
from a single element based on the present study are 
exact since these satisfy the homogenous form of the 
equilibrium equations. 

Next, the normal stresses at points ① and ② of 
the mid-span of beam (Fig. 3(b)) are evaluated and 
compared with the results by SAP2000 analysis in 
Table 2. The correlation between the two sets of re-
sults is seen to be excellent for the points considered. 

 
Table 2. Normal stresses at the mid-span of the curved I-
beam subjected to a vertical tip force (N/cm2). 
 

Points This study shell elements 

①  -178.88 -177.09 

② 209.37 207.20 
 

Table 3. Displacements, twisting and rotational angles at free 
end of the curved I-beam on elastic foundation subjected to a 
vertical tip force (cm, rad.×10-2). 
 

Isoparametric curved beam [16]  

4 20 50 
This 
study 

xU  -0.27901 -0.26703 -0.26659 -0.26650

yU  0.37605 0.38767 0.38798 0.38804 

zU  0.54360 0.55317 0.55346 0.55352 

1ω  -10.560 -10.874 -10.882 -10.883 

2ω  -1.3330 -1.3418 -1.3420 -1.3420 

3ω  -1.9528 -2.0186 -2.0200 -2.0202 

We consider the curved beam supported partially 
on two-types of elastic foundation as shown in Fig. 
(3b). It is assumed that the foundation terminates at 
the beam ends and the foundation parameters are 

yk = zk = 10 N/cm2 and kω = yg = zg = 10 N. The 
behavior of a beam on an elastic foundation, which is 
partially supported, is very complex due to the cou-
pling effects of extensional, flexural, and torsional 
deformations. 

Table 3 shows the comparison between the solu-
tions by this study and those by various numbers of 
isoparametric curved beam elements for the coupled 
displacements, twisting and rotational angles at the 
centroid of the free end. From Table 3, it is seen that 
as many as 50 isoparametric curved beam elements 
are needed to obtain accurate results when compared 
with the present results. In Fig. 4, the convergence 
behavior of isoparametric beam elements for the 
normalized displacements, twisting, and rotational 
angles with respect to the values from the present 
exact solutions is displayed. As can be seen in Fig. 4, 
the convergence for the normalized displacement yU  
and rotational angle 2ω  are much faster than those 
for 1ω  and 3ω . Another convergence study has 
been conducted for the coupled displacements, twist-
ing and rotational angles of the beam with the in-
crease of the number of terms in power series expan-
sion and the deformations with various numbers of 
terms are presented in Table 4. It is observed that the 
coupled values gradually approach the exact solutions 
as the number n  increases. 
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Fig. 4. Convergence behavior of the isoparametric curved 
beam elements for the normalized displacements and rota-
tions at free end of the curved I-beam on elastic foundation  
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Table 4. Convergence of the displacements, twisting and 
rotational angles of the curved I-beam on elastic foundation 
with the increase of n  (cm, rad.×10-2). 
 

Number of terms in series expansion, n   
10 20 30 40 

xU  -0.37197 -0.18494 -0.26636 -0.26650 
yU  0.95080 0.57368 0.38830 0.38804 
zU  0.86186 0.42522 0.55329 0.55352 
1ω  1.6311 1.9728 -10.861 -10.883 
2ω  -2.2253 -1.0950 -1.3416 -1.3420 
3ω  4.3928 3.0574 -2.0117 -2.0202 

 

  
(a) Non-symmetric open section 

 
A = 9.6 cm2, E = 73000 N/cm2, G = 28000 
N/cm2, J = 1.152 cm4, 2I = 102.4 cm4,  

3I = 25.6 cm4, 23I = 38.4 cm4, Iφ = 256.0 cm6, 

22Iφ =-204.8 cm6, 23Iφ = -256.0 cm6,  

2A = 3.79228 cm2, 3A = 4.43143 cm2,  

23A = 0.31958 cm2, rA = 47.05882 cm4, l = 100 cm 
 

(b) Material and sectional properties 
 
Fig. 5. Non-symmetric cross-section of the cantilevered beam 
subjected to a vertical tip force. 

 
6.2 Curved beam with non-symmetric open section 

The purpose of this example is to evaluate the spa-
tially coupled displacements, twisting and rotational 
angles, and normal stress at arbitrary span and point 
of cross-section for non-symmetric curved beam sub-
jected to an external force. Fig. 5 shows the dimen-
sion of the non-symmetric cross-section of cantile-
vered curved beam subjected to a vertical tip force at 
the free end. For a curved beam neglecting the foun-
dation effects, Table 5 gives the comparison of results 
using a single element by this study with those using 
various numbers of isoparametric beam elements and  

Table 5. Displacements, twisting and rotational angles at free 
end of the curved beam with non-symmetric cross-section 
subjected to a vertical tip force (cm, rad.×10-2). 
 

Isoparametric curved 
beam [16]  

20 50 

shell 
elements This study

xU  -3.9645 -3.9698 -3.928 -3.9708 
yU  -9.1336 -9.1500 -9.172 -9.1531 
zU  6.2246 6.2353 6.168 6.2374 
1ω  15.422 15.448 14.88 15.453 
2ω  -12.384 -12.392 -12.47 -12.394 
3ω  -8.7558 -8.7556 -9.013 -8.7555 

 
Table 6. Normal stresses at the mid-span of the curved beam 
with non-symmetric cross-section subjected to a vertical tip 
force (N/cm2). 
 

Points This study shell elements 

①  -216.36 -219.06 

② 429.51 429.43 

③ -377.67 -376.14 

④  187.59 183.15 
 
1440 shell elements of SAP2000.  

It can be seen from Table 5 that the present results 
are in excellent agreement with the solutions obtained 
by using 50 isoparametric beam elements and in good 
agreement with those from the SAP2000 analysis for 
all coupled displacement parameters. In Table 6, an-
other comparison is made for the normal stresses at 
four different locations of the cross-section at the 
beam mid-span. It is seen that the present results 
show excellent correlations with those of SAP2000 
analysis with a maximum difference within 2.37% at 
point ④. 

To show the practical application point of view for 
the curved beam on an elastic foundation, the beam 
including the foundation effects as shown in Fig. 5 is 
considered. In evaluation of the foundation parame-
ters, the analytical method studied by Vallabhan and 
Das [37] based on the modified 2-D Vlasov model is 
applied. This method uses experimentally determined 
values for the soil modulus of elasticity sE  and the 
Poisson ratio ν . If the soil is loose sand with sE = 
1750 N/cm2 and ν = 0.28, the application of the Val-
labhan-Das method produces the coefficient of sub-
grade reaction sK = 0.99461 N/cm3 and zg = 
14918.52 kN. For a beam width Bb = 4 cm, the 
Winkler foundation modulus is zk = s BK b = 3.978 
N/cm2. In Table 7, the coupled displacement parame 
ters at the centroid of the free end by this study are 
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Table 7. Displacements, twisting and rotational angles at free 
end of the curved beam with non-symmetric cross-section on 
elastic foundation subjected to a vertical tip force (cm, rad.). 
 

 Isoparametric curved beam [16] 
 4 20 50 

This study

xU  -0.35134 -0.35707 -0.35727 -0.35731
yU  3.6671 3.3520 3.3404 3.3381 
zU  0.54427 0.56046 0.56104 0.56116 
1ω  0.27182 0.27991 0.28020 0.28026 
2ω  -0.01117 -0.01119 -0.01119 -0.01119
3ω  0.15147 0.15416 0.15426 0.15428 

 
compared with results from various numbers of 
isoparametric beam elements. Excellent agreement is 
observed between the results from this study using a 
single element and the finite element results using as 
many as 50 isoparametric beam elements. 

 
6.3 Curved beam with non-symmetric closed section 

In our final example, a curved girder with non-
symmetric closed section and with subtended angle 
90° as shown in Fig. 6 is considered. The girder is 
simply supported at two ends and is subjected to an 
eccentric lateral force 89 N at the exterior web of 
mid-span. In the experimental study by Fam and 
Turkstra [38] based on linear elastic region, plexiglass 
was chosen as the model material in preference to 
aluminum or steel. Due to its low modulus of elastic-
ity, a reasonably sized model could be tested with 
very small loads to obtain a significant measurable 
response. Because the material properties of plexi-
glass are time dependent, a series of preliminary ten-
sion and bending tests were performed on specimens 
cut from the same sheet as the model sections. As a 
result of the test, the material properties are taken as 
E = 275.97 kN/cm2 and ν = 0.36. Also, the effect of 
loading history on the viscoelastic behavior of the 
plexiglass was found to be negligible if a time interval 
of at least 24 hours was left between loading cycles to 
allow the model to recover its original unstrained 
state.  

In our final example, a curved girder with non-
symmetric closed section and with subtended angle 
90° as shown in Fig. 6 is considered. The girder is 
simply supported at two ends and is subjected to an 
eccentric lateral force 89 N at the exterior web of 
mid-span. In the experimental study by Fam and 
Turkstra [38] based on linear elastic region, plexiglass 
was chosen as the model material in preference to 
aluminum or steel. Due to its low modulus of elastic- 

 
(a) Non-symmetric box section 

 
A = 51.870 cm2, J = 1306.249 cm4, 
2I = 7973.244 cm4, 3I = 507.779 cm4, 
23I = 1.353 cm4, 222I = -427.197 cm5, 

223I = -6078.562 cm5, 233I = -9.500 cm5, 
Iφ = 24539.193 cm6, 2Iφ = 6811.308 cm5, 

3Iφ = -22.924 cm5,  22Iφ = -225.146 cm6, 
23Iφ = -35838.256 cm6, 2Iφφ = 2279.427 cm7, 

2A = 4.183 cm2, 3A = 37.528 cm2, 
23A = 0.006035 cm2, rA = 3016.378 cm4, 

2rA = -95.755 cm3, 3rA = 95.247 cm3 
 

(b) Material and sectional properties 
 
Fig. 6. Simply supported curved girder with non-symmetric 
box section. 
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Fig. 7. Lateral displacement along the internal web of a 
curved box girder. 
 
ity, a reasonably sized model could be tested with 
very small loads to obtain significant measurable 
response. Because the material properties of plexi-
glass are time dependent, a series of preliminary ten-
sion and bending tests were performed on specimens 
cut from the same sheet as the model sections. As a 
result of test, the material properties are taken as E =  
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Fig. 8. Normal stress along the mid-point of the lower flange 
for a curved box girder. 

 
275.97 kN/cm2 and ν = 0.36. Also, the effect of 
loading history on the viscoelastic behavior of the 
plexiglass was found to be negligible if a time interval 
of at least 24 hours was left between loading cycles to 
allow the model to recover its original unstrained 
state. 

The out-of-plane lateral displacement of the top 
flange at the location of the interior web and the nor-
mal stress at the mid-point of the bottom flange by the 
present study are depicted in Figs. 7 and 8, respec-
tively. For comparison, the experimental results [38] 
and the solutions from 10 HMC2 curved beam ele-
ments considering shear effects developed by Gendy 
and Saleeb [39] are presented together. From Figs. 7 
and 8, it can be found that present results are in a 
good agreement with the comparisons reported. 
 

7. Conclusions 

This study is the first attempt to evaluate exactly 
the spatially coupled deflection and the normal stress 
of shear deformable thin-walled curved beam with 
non-symmetric cross-section considering or neglect-
ing the foundation effects. It overcomes the draw-
backs arising from the use of the finite beam element 
based on approximate shape functions. The proposed 
curved beam based on the exact stiffness matrix de-
veloped by this study is not approximate but exact 
since the displacement functions satisfy the homoge-
neous form of the equilibrium equations. It should be 
noted that the present method requires no explicit 
derivation of the closed-form solutions for displace-

ment parameters of curved beam. 
Through the numerical examples, the displace-

ments, twisting and rotational angles of the coupled 
curved beam by this study are shown to be in excel-
lent agreement with the analytical solutions and the 
finite element solutions using the isoparametric 
curved beam elements and the shell elements. Particu-
larly, this curved beam element gives an accurate 
normal stress at any arbitrary location of cross-section 
along the length with the use of only one element. It 
is believed that the present procedure is general 
enough to provide a systematic tool for exact solu-
tions of simultaneous ordinary differential equations 
of the higher order. 
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Appendix 

Equilibrium equations and the force-deformation 
relations for the curved beam  

i) Equilibrium equations of curved beam 
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